If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-18x+7=0
a = 4; b = -18; c = +7;
Δ = b2-4ac
Δ = -182-4·4·7
Δ = 212
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{212}=\sqrt{4*53}=\sqrt{4}*\sqrt{53}=2\sqrt{53}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{53}}{2*4}=\frac{18-2\sqrt{53}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{53}}{2*4}=\frac{18+2\sqrt{53}}{8} $
| g+g²+g³=(1+g)² | | 3x+x-5=8 | | 15t+12=72 | | 5(x+39)=35 | | 0-5x+37=37 | | 7m+²=343 | | -26=x-12 | | n/1.9=24.6 | | 9-2x+37=37 | | (1/2)h=10 | | 60/19=x | | 7/3+3n=4/5+18 | | -9p-5(5-3p)=3(p-5)-16 | | O-4x+1(10)(37)=37 | | 28/50=7/x | | 12u-18=7u+2 | | x3-6x2+9x-2=0 | | 0-5x+1(10)+37=37 | | 19h+12h=82 | | x3-6x2+9x+-2=0 | | 2/x=24/30 | | 8/2=x/16 | | 0+5x-1(10)+37=37 | | 5n-12=4n-12 | | 0-5x-10+1=37 | | (z+5)^2=7 | | 0-5x+37-10=37 | | y^2-12y-6=0 | | 26=3s−4(25−s) | | (3x-5)=9 | | 3c^2+8c=11c^2 | | 5x+3=3x−11 |